Researcn Program in Game Theory and Mathematical Economics

AD 639591

Research Memorandum No, 20

July 1966

)

- AN APPLICATION OF NON~STANDARD ARALYSIS TO GAME THEORY

by
N )
lEl""RHOUSE *
FOR ri"EDERAL SCIENTIFIC AND Eugene Weslexr
TECHNICAL INFORMATION

¥ Hardcopy Tlicroticho

Cipmeee |

The Hebrew University of Jerusalem

Jerusalem, Israel

The research described in this paper wss partially supported by

the United States Office of Naval Research, undeir Contract No.
Repro“uction in whole or 1in

N62558~4355, Task No. NR 047-045,
‘ \f part is permitted for any purpose of the United States Gcvernment
DDC
PPN AL
0CT5 1966 ’

Ul __guw
C




1t

1. Introduction

In this paper I shall present an application of an extended
field of real numbers %o the proof of a theorem in the theory of
cooperative games. The proofs set forth below, which involve
the use of A. Robinson's theory of nog—standard analysis and are
metamathematical in charactér, are not the only way in which the
theorems can be verified; alternative proofs utilizing ordinary
topological methods can in fact be carried out quite briefly.
However, the attempt to apply non-standard analysis to game theory
is novel., For this reason, what I have to show may be of interest,
not only insofar as it presents new information on the theory of
the kernel of a cooperative game, but also in that it demonstrates
the possibility of effectively exploiting non-standard analysis
as a tool for future investigation in this area. It could very
well turn out, for example, that non-standard analysis could serve
as a means by which concepts defined for games with a finite num-
ber of players could be extended to games with a continuum of

players.

2. Definitions and Bagic Concepts

N is a (finite or denumerably infinite) set of consecutive
natural numbers, called players. Vv, the characteristic function,
is a non-negative real function defined on the subsets of N,
called coalitions, which satisfies

(2.1) v(#) =0, v(§fi}) = 0, for all i in N.




A game is a pair (N;v). A coalition structure (G.S.) is
a partition of N. An individually rational payoff configuration
(i.r.p.c.) is a pair (x;of}), where o0 is a coalition structure
and x 1s a real vector having one component for each member of
N and satisfies: x;, 2 0 for all i in N and Lg%y = v(B)
for all B € 08 Let (x;,9 ) be an i.r.p.c. For all S €N

we denote

(2.2) e(S;x) = v(S) - Lg%, .

e(S,x) is called the excess of S with respect to (X;og> )e
Further, let i,j ¢ B € o2 and i # j; we denote

(2.3) . f7ij ={s; scN, 1i€e5, jgS)
(2.4) Si.(x) = Sup e(S,x)
J
S € i

(2.5) 6= (Jj,S) = v(8) -~ v(s-1{(j})

(2.6) Q(j) = sup % (j,S)

S a coalition

1}

We say that 1 outweighs j with respect to (x; . 0)) if

Sij(x) > Sji(x) and X > 0. The i.r.p.c. (x;c{7) is balanced
1f there exists no pair of players h and k such that

h,k € B € ;D and h outweighs k. The kernel K(G) of a game
G 1s the set of all balanced i.r.p.c.'s. The following theorem

1= known (see [ 2 ]; see also [1] and [3]:




Theorem 2.1, For any finite game G (a game consisting of

a finite number of players) and any coalition structure ‘ﬁo there
exists a payoff vector x such that (x; %)) is in the kernel.
This theorem is in general untrue for infinite games,
Example: GConsider the game G = (N;v) where N = {1,2,3,...}
and v 1is defined as follows:
1 For A of the form {n, n+l1, n+2,...}
(2.7)  v(A) =
O otherwise
Choose the coalition structure & = {N}. For this coalition
structure there exists no payoff vector x for which (x3D)
is in the kernel of G,
Proof: By way of contradiction. Suppose that for some x,
(x; D) 4is in the kernel., If x, > 0, then the coalition
Cpyq1 = [n+1, 2, ou} 35 in Jp g
e(Cn+1,x) =1 = (xn+1 Xt cee) > 0,
On the other hand, for any coalition C in Y v(C) =0
and hence e(C,x) = v(C) =~ Zjecxj $ -x, < 0. Thus

3 (x) s -x, < 0. It follows therefore that

n,n+1
Sn,n+1(x) < e(Cn+1,x) < Sn+1,n(x) and Xn > 0.

This implies that n outweighs n + 1, in contradiction to the

hypothesis that (x;étb is balanced. Thus x = 0 for all n.

Therefore x = (0,0,...) which is impossible because in must

equal vVv(N) which is equal to 1. We thus see that the hypo-

thesis that such an x exists leads to a contradiction.

Definition 2,2, G = (N;v) is a superadditive game if for any

two disjoint subsets C,D of N, v(C U D) =2 v(C) + v(D).




3. The Non-Standard Model of a Game

We shall start with a brief definition and description of a
non-standard model of analysis. For more complete details and
for proofs the reader is referred to the first thirty pages of
[ 4] or to the material appearing in the chapter on non-standard
analysis in [ 5 ]. R

We begin by classifying real numbers and certain sets and
relations into categories called types. We perform this classif-
ication inductively. A real number will be said to be of type OC.
Suppose A1,.ou,An are sets such that for every i, 1 s 1i £ n,

Ai consists of elements all of which have been previously class-
ified (by induction) into type t;. Then any subset of A, x...X A,
will be said to be of type (t1,u~.,tn). Thus, 5 is of type O.

Thne set of all even numbers is of type (0). The order reiation <,
by set theoretic definition, is of type (0,0). Note: There exist
elements that are of more than onre type; the empty set, for ex-
ample. The function cos zy may be said to be of type (0,0,0).

The function mav likewise be sa1d to be of type ((0,0),0) or of
type (0,(0,0)). We will now inductively define the length of a
type. The type O will be said %o be of length 1. If t1,t2,...,tn
have been previousiy (inductively) defined to be of lengths
/€1Vp,.,.,lg, then the type (t1,0u.,tn) will be said to be of
length _/q +.£2 + o +_£n + 2. Let éigo be the set of =1l types

of lengths less than 30. It is clear that 7 is a {inite set.
o030




Let A ©be the set of all elements that belong to at least
one of the types in 6t;0' Then A includes, among other things,
all real numbers, all cubsets of the set of real numbers, all sub-
sets of X x X, where X 1is the set of real numbers, and hence,
by set theoretic definition of function, all functions ¢f a single
real variable,

Since a vector (finite or denumerably infinite) is essentially
a real function defined on a subset of the set of natural numbers,
A also contains all vectors. JSimilarly, it contains all measure
functions defined on sets of real numbers. Thus it contains
Sup and %,

Let d4= {Aj; ﬁi, Tt’ ¢ID).i-a natural number such that i =2 2
t-a type

be a relational system, consisting of a set of individuals, aunu of
a set of relations defined on the set of individuals. A, the sei
described in the preceding pzragraph, is the set of individuals,
The relations ¢i, T, and ¢ID are defined as follows:

¢i is an i-ary relation on A. The i-ad <§1,...,anv) .
(where a,,...,a —are elements in A) is suid to be in g, if
and only if a, 1is a set and the i-minus-1-ad .<a2,...,am> ig
1 member of a,. For any type ¢, Tt is a one place relation on

A. b €A is in T, if and only if b is of type t. ¢ID is

t
the binary identity relation on A,

Let L ©be a language made up of a set of symbols whose car-
dinality is greater than the cardinality of A, and of a one-to-one

correspondence f from the elements of Lxﬂ (individuals and re-




lations) into L. Symbols that thus correspond to relations

will be called predicates. Denote by K the set of all sentences
in the calculus of predicates of first order formed from symbols
of L that are meaningful in ¢x{'. Denote by Ko the set of all
sentences in K that are true in 0@(. Consider the following

set of sentences.

_ =1 - 1 ==
(3.1) K1 - Ko v {QT,O a} v {~GID aau}u an index that runs
through the real numbers.

Here a is a symbol in L that does not correspond under f
to any element in ¢¢f 5%,0 1s the symbol in L that signifies
(under f) the relation T,. G;D is the symbol in L signify-
ing gID‘ Eu is the symbol in L that corresponds to the
number .

Since every finite subset of &L, possesses a model (42(18 a
model of every finite subset of X, (see [4], n. '8)), then by
the compeciness principle (ibid) K, itself possesses a model.
Every model of K,; =<chall be called a non-standard model of analysis.

. Let ’53 pe some model of K1. Every sentence 1n “he
predicate calculus of first order that is true when interpreted
in 64{ remains true when i\ is re-interpreted 1“,2? . Numbers,
sets, and relaticns in 04{ a,2 gignified by symbols in L.
These symbols, i: "=+ , when re-interpreted in _jg: signify
certain elements in _;? . Any sucn element will be called 3,2? -
number, dzy-set, or 42? -relation, acpending on whether the

element in uﬂf signified by the corresvonding symbol is a num-




-

ber, set or relation. For any element ¢ in 2% which cor-
responds to a symbol ¢ signifying some number/ ¢ in ,qﬁ ’

5%.06 is true in j@ . For any x in /é? such that §g'ox,

x will be called a ’)?'-number. All other individuals in ,f? are
called J;Z?-set:. The order reiation < in odi carries over to
3 complete order relation on ,é?-numbers. The three place rela-
tion + in A (a,b,c is in the relation if and only if a+b = c)
passes over to a three place relation in ‘fQ? on :z?-numbers.
The number O passes over to J in fZ? . There exist nunbers
in ‘22; greater than J that are less than all \jZ?-numbers
signified by symbols corresponding to positive numbers in C{C
(see [4]). Such ‘lzy—numbers are called infinitesimal. Infinite
numbers are defined analogously. There exist \é??-numbers and
Liy-sets not signified by any symbols signifying elements in C{i .
There exisy sgsets whose elements all appear in 9D while the sets

A

themselves do not appear in ??. Such sets are not {Z?—sets.
-

1
~' -gets have properties that are analogous to those of cJﬂLsets.

s
They obey all axioms of set theory expressible in the predicate
calculus of first ordex. We can thus speak of elements that are
contained in a :z?-set, inversections of ‘jZ?—sets, vfglsubsets
of 59—sets, etc. Hence we can deiine \ég?-vectors, Jz;)-furctions
and :2?~relations in complete analogy with the set theoreiic
definitions c¢cf Qétvectors. <7#;functions and <3§Lrelat10ns. He

, 17 ~
simply substitute the words .zg-set for Clygset in each of the

corresponding cdefinitivns. Lenotle by iﬁ/@/the set of all natural

numters in 51?(

[l 3 ' e e
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Denote by JY the image of /¥ in B, i.e., the element in _A
signified by the symbol corresponding to AL A 1i. aﬁ-set.
Anykjg-number contained in /A will be called a naturalgjy-number.

-

There exist infinite as well as finite natural Qb-numbers.
Z-numbers for which there exist symbols corresponding to numbers

in AZ{ will be célled standard numbers., For any finite&é?-number

d there exists a unique standard number d1 such that d1 is

~

the nearest standard number to d (see [4]). For any number e
in 114 w2 shall denote the image of e in _2? by e . For any

finive number h in _# we shall denote the nearest standard num-

-

ber by he®, For any standard~é?—number { we shall denote by LY
the image of ¢ in‘£¥.vé?-elements will in general be denotea by

~ Y

lower case latin ietters crowned by roofs (b, ¢, d, etc.).clf-

elemencts will be denoted in general by lower case uncrowned latin
letters (p, @, r, etc.). BID' the image of ¢ID in ‘A, may be
agssumed, without loss of generality, to be the identity relation.
That is, if & and L are individuals inhzf, the pair <§,B> 18
~n ¢ID it and only if & and B are both the same elexent.

V"e define a non-standard gume in complete araiogy witn the
standard Mi;game given above. Let ﬁ be a~é9‘set of concecut:ve
naturalkéf-numbers. If every number in N is less than some_A -
aunber ¢ then we say that & isvég-finite. Note: ﬁ may con-
sist of an infinite rnumber of\ééLnumbers and still be.Z?-finite.
Let ¥ be awé9-function defined on all\j;Lsubsens of &, whose
values are non—negative\éy-numbers; 3(&) = C, 3([;}) = 0 rfor

-~ -

each i1 in N. The pair (N;v) is a non-stardard game, or a

.églgame. Let ﬁé be a _éy-set of vé?_




| < oy

3ub.e 3 of N such that any two such subsets are disjoint and

~ -

such that the union of the jB-subsets in & is equai to N.

.ﬁ is then czlled a ,@-coalition structure, Let X be a$-
vector having one coordinate for each element in ﬁ. The pai~
(i;ib will be said to be a “4-i.r,p.c. if each coordinate of

X 1is non-negative and iieiii = Q(i) for each b in &5. The
definitions of é(é;i), 5343, é1’3, 6(3,%) and 6(3) are
entirely analagous to the definitions (2.2) - (2.6). The def-
inition of balanced @-i.r.p.c.'s in a Z)-game is also com-
pletely analogous. The\i?-kernel is the set of all‘zy-i.r.p.c.'s
that are balan-ced. Aﬂ-game is .@-finite if IAQ is @-finite.
Lemma 3.1. For anyﬂ-finite gane E} = (I.‘I;;r), and for anyﬂ-
coalition structure Qb, tnere exists a A-vector X such that
(i(;f,b) is in the J)-kernel,

Proof: Express Theorem 2.1 in the first order predicate cialculus
151ng Symbols from L. Reinterpret tne stutement in‘29. The

rexnterpreted ~*2*tement yields Theorem 3.1,

Trnecgrer 3.2, Let G = (N;v) be a finite superadditive gume,

Let (x; D) € K(G). Then for all i 1in N, x, & a(i).
Proor: 3By contruiiction. Assume that there exists 3 player |,

for which X5 >a(3q). It is clear thut 0(J,) 2 0. Then
1

X, >0, Let T be the coalition in 427 for which j, € T, T

4
must contain more thun one player. Otherwsise, by (2.1), it follows

that x. = 0. The excess e((T -~ {31}),x) > 0 because e((T - (31}),x) =

Jq

pl
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V(T = L) = EBye(pog g% = V) - 00T - Ere(nog3,1) %k
2 V(1) - 000 - Be(oogg, %> V) - Xy - Trepa( P T

v(T) - ¢ (?) - v(T) = 0,

xer*x =V
Also, the excess e({j1},x) = v([j1}) - xj1 =0 = xj1 < 0. Ve

assert that for any coalition S containing J, there exists a
non-empty coalition V not containing j, for which e(V) > e(S).

We have proved this for 8 = {j,}. Let S contain more than one
player, then e(S,x) < e((S - {j;}),x) since e(S,x) =

= V(8) - T Xy = V(S = {J4}) + 0(§,8) = Tpegxy S V(S - {jq}) +

+ (0(31) - xj1)'zk€S—{j1}xk < v(S - {31}) - zkES—{j1}xk = e(S - {31},X)-

Let V, Dbe a coalition such that for each coalition Vo, e(V2,X) s
e(V,,x). Then j, £ V,. V, must contain at least one player in

T - {j;}; if not, then

ellT - {3311 uVyxd = v([T - {393 U Vy) = Ten_y Xy = Tiey X

LY

v(T - {31}) - ZkET-{j1]xk + v(V]) - zk€V1xk

e(T - [31},x) + e(V1,x) > e(V1)

in contradictlon.to the assumption that for all V,, e(Va) s e(Vy).
Let 4 be a player contained in both V, and T - {j,].

From what we have seen there exists a coalition C in ;}131

(e.g., V;) such that for any coalition D in :73,L’ e(c,x) > e(D,x).

Wwe have shown thut x:j1 > 0. Then 4 outweighs Jj,. This is in

contradiction to the assumption that (x;ib is in .K(G). The 1lemma

1s thus proven.
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Note: When D = {N}] the requirement that the game be

superadditive is not needed,

Lemma 3.3, Let G = (N;v) be agé?-finite superadditive game,
Let (%;9) be a B-i.r.p.c. in the H-kernel of G, Let 0 be
the Z~function corresponding to 0. Then for all i in N,

A ~

N{i) 2 X5

The proof is similar to the proof of Lemma 3.1 (see Theorem
3.2).

Let T = (N;v) be countably infinite, where N = {1,2,3,...}
and v, the characteristic function, fulfills the following con-
ditioné:

(3.2) v is superadditive (see Definition 2,2).

(3.3) For any O < ¢ and for any coalition S there exists a
natural number n,; = n1(S,e) such that for any n 2 n,,

0 £ v(S) - v(S - {n+1, n+2, ...}) < e.
(3.4) 23210(3) <o (see (2.6)).

Let §é> be any coalition structure on TI'. Let T = (N;v) be the
Z . . ) .

\2?-game corresponding to T 1nk29. Let &5 be the image of

SZ) Let m; be some infinite naturalLE?-number.. Let

# The roofs on symbols like + > =2 < s | | (absolute value)
X € N U ete. denoting the use of the non-standard model
will be omitted.




N. = {n | n $ my, n a natural -number},
1
o, = the B-function obtained from v by restricting
"
its domain to be the 2-subsets of N
- mg’
@m1={TIT=T ﬂNm,T ¢D}.
Let 2z be an m1-d1mensn.onal 3-vector such that (z,@m1 is
a Q—i.r.p.c. of 1‘511 = \Nm1;vm1) and such that
(3.5) z; s 0(i), for all i such that 17 s i s 51.

Let 2z ©be the infinite dimensional ed-vector defined as follows:
-~ .v
2, = [zk~J
(k~ is the image of k 1n$ zk~ is the k -th component of 2z;

[zk~] is the nearest standard number to zk~; [Zk~ is the
counter image of [zk~]. in w{.)

Lemnma 3.4, For every coalition S in (@, ziGSZi converges,

Proof: It is clear that z; 2 O for every natural number i,

~ A ‘ ~
For every natural number i in (ﬁ{ let Py~ = [zi~] - 25~

Let S Dbe the image of S in@ Then for every natural number

in Cz{andforall 6 >0 1n0€f

A ~ -~ ~

- - i
05 [Ligp25] = 1s¢ [Z )* is:: 23+ Bigy™Py < 1s£'2 + 8 1=:L”fit ]
1€5 1 €3 i€s ies i€s i€S

~ ~ ~

This arises because for each i such that 1 =47, i is a

standard aumber and p; is infinitesimal (positive or negative)

- : . - it d T
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- (1) 3
whereas 8~ [5 ]i is a standard positive number; hence pi < 87 (& ]

L] -

i -
1$£°Zi'+ 8" SL~[i 1" < ziES‘ zi + 87, where Sm1 = S n N m,
i€s i€s i

~

= vh1(3m1) + 6 = v(Sm1) +8 s v(S) + 8

~

Thus for every natural 4 and all O < ¢

£._,2. < v(S) + 6,

3471
ieS
satisiying (3.5)

Theorem 3.5. Let z be an ﬁ1-dimensiona1ué9-vector such that

o . iy - [ 1Y

fz, m1) is a &-i.r.p.c., of rm1 and let z, = [z,~] . Here

r& is derived froéabountably infinite game I whose character-

istiec function satisfies (3.2)-(3.4). For every coalition S in

G

oL} Zyegzy = V(S).

Proof: 1In the proof of Lemma 3.4 we saw that O £ I,.52; ¢ v(S)
ise

for every natural number ¢, What remains to be proven is that

for all & > O there exists a natural number ¢, in &#Isuch

that I,.g2, + 8 > v(S)., Let ¢, be a natural number such

isd
that I,,,0(i) € 3 and such that for all n > 4y,
v(5) - v(S = {n+1, n+2, ...}) £ 3 (see (3.3)-(3.4)). Then

-

A

(1) The meaning of = in the non-standard model is exactly = ;

hence we are.justified in writing = instead of . This
is because @r is the identity relation,
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2y 1™ .8 i\~ ~
154, 1L, 154,
= ﬁ/\ §Z£. + ('5) * ‘Aeg(«t )i £1>L1
1‘&1 1‘&1
i - o
= T)c (z + p $) o+ (3) . ZA eb (§7 + EQ>gTQ(l)
$L1 1$L1
A A A . . .. . .
where pf = 2A* - zA, and is, of course, infinitesimal (positive

or negative). Thus (%0~ (57)+ SA >80 for a1l A L?. Hence

A A
zgeg(zA + ) +(3) - ers FF v 2 >4““(1) 2 z1es 2§ + Z, 13471 (1)

1‘&1 1$L1 1‘&1
and by (3.5) . A A
/
A A N A
2 Z%ES z1 + 2 >L7Z
ise? 1€SA

m4

A )
< i e A 3 -5 A . . A
and since (z,ﬁm1) is agg i.r.p.c. and §m1 is 1n<@m_] we

have
A
= vA (SA ) = v(SA ).
m," m, m4
.’\ ~ "A A A .~ ~

For all n > 4, we know that v(8) - v(S - {n+1 , n+2 y +se}) S (%) .

A A AN 8~ A LA A LA 8~
1 . - A A -
Then v(S) v(Sm1) < (3) . Then V(Sm1) 2 v(S) (3) .
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From this we deduce that

(L eg2y + 8)7 > v(s).

isL1

Therefore,
ziESZi + 8 > v(8),
ist,

Lemma 3.6. Let §1 be a'jg-subset of ﬁﬁ1. Let S be the
04-coalition containing every natural /4—number j for which

i~ isin S'. Let S~ be the image of S in 7. Then

|£r(§1) - v(87)| is infinitesimal.

Proof: Let & be a standard number greater than 0, Let

¢' bve the image of & din C4L Let 2, be a natural(uf-number

such that for all n 2 n,, |v(Sn) - v(S)| < (%Jv andi§gsi) < (%JA; here
S, =5 - {n+1, n+2, ...} (see (3.3)). Then for anr standard

B-natural number n greater than ﬁ1, |%(S~£) - v(s™)] < (%).

Since S~£ ana %15 coincide for all standard n, this means

that for all standard n greater than ny,
~ “,1. A~ €
(3.6) |v(s n) - v(57)] < (3)
Suppose |¥(S') - ¥(s™)| > &. If ¥(S¥) > ¥(S') then
v(s™) - %(81) > €. Because of superadditivity
N 21 ~onl A
v(S') 2 v(S ﬁ) + v(S -8 n).

Hence

~

v(87) - ¥(8's) = W(5™) - (9(sT2) « (ST - 5Ta)) 2 (™) - (5h) > ¢
which contradicts (3.6). Thus if | v(8') = ¥(S¥)| > &  then
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(3.7) vsh) > v(s™)

Let W =W, UW, Dbe any finitetz{-coalition, where W, and W,
are disjoint subsets of W. Through mathematical induction, and
using (2.6), it may be readily seen that v(W) = v(W;) + I,y a(i).
2

The assertion that v(W) s v(W,) + Z,_y 0(i) for all W, wW,, W

1 1EW2 1 2
such that W =W, UW,, W, nW, = @, and 3n Vi (i € W= i < n),
is expressible as a sentence in the first order predicate calculus,
Since this sentence is true in .£¢’it is also true when re-

A

interpreted invé%. Applying this knowledge to s' we obtain:

* el t el * el oh a4 A P * e
(3.8) wv(S ) s v(S') £ v(S ) + 23,51 41 (i) s v(S. ) +
ny ~ ny ~ i€S - N~ n, ~
s ) s ws! )+ (D)
i2n1~ n1-; -5 *
By superadditivity,
(3.9) v(sT) 2 v(s| )

1

Using (3.7), (3.8) and (3.9) we receive:

-~ - -~ -~

(v(sh) = V@I = v(81) - s s (W8T, )+ (§) - v(sh, ) = ().

W™

This is in contradiction to the supposition that |v(ST) - v(ST)| > e,
Thus for every standard _f-number, ¢, € > 0, |v(S1) - v(sT)| = e.

Hence |v(S1) - v(S7)| is infinitesimal.

' ~1 . -
Lemma 3.7. Let S  be 8\2?-subset of N

. Let S be thecof-
1 .

coalition containing every naturaltyqlnumber j for which j~ is

~

. A1 : ‘A a ‘A ~ . . N . .
in S'. Then |IZi.g12] - (I;¢g2;)"| 1is infinitesimal. Here z

and z are as defined in the paragraph containing (3.5).
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Proof: Since I * v({1,2,...)) < ®», it is clear then that

®
1=1%4
for any ¢-coalition T I, GT § converges absolutely, Let &
be any particular positivey@ -number and let ¢ Dbe A naturalﬂ/

. )
number such that 21240(1) < 3 and such that Zieszi < 3 Then

124
~ . - R » \
125512 - (Ti¢g23)7 | = !(ziGS'zi - 21687 i) * (216812 - (Zye523)7)1
1u’“ ist™ i>L~ i>L

* ‘216812 - Tiegr2i®l * Tiesr?i * (Ties?)
164~ isd™ i>L™ i>L
- " 6~ 6~
$|€ + .0+ E~] 4 (3 + (3)
where &, ..., £, are infinitesimal numbers,
6~ ~ ~
< (TR -
Thus for every standard positiveug?-number 8~ |£1€S1z (Tlesz )™
is 1less than it. Therefore |21€S1z - (zieszi( | is infinitesimal,

Theorem 3.8 (an existence theorem): Let T = (N;v) be an infinite

game where Vv, the characteristic function, fulfills conditions
(3.2), (3.3) and (3.4). Then, for any coalition structure G
there exists an infinite dimensional vector x such that (x;éb)

is in KX(T').

Proof: Let I = (N;v) be the A -game correSpondlng to T in

S "

éH- Let &D be the image of D. Let m1, Nm1,.v;1, and 9 be
as defined in the lines following (3.4). Let 2z be an m,

dimensional Z-vector such that (z;87 ) is in the -B-kernel of T_ .
1 l1
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Such a 2z exists, by Lemma 3.1. For all finite natural i,

~ ~

z; is finite since by Lemma 3.3 z; £ 6(;), and 6(1) is
finite, We define the infinite dimensional o4-vector Z as
follows: 2, = [2,~]"". It is clear than z; 2 0 for all
natural i. By Therem 3.5 we know that L, .52, = v(S) for all
S in®. Thus (2;%) is an i.r.p.c. We seek to prove that
(2; D) 1is in the kernel of T.

Let H Dbe a ccalition in 53 that contains at least two
different players. It is sufficient to prove that at least one
of the following two cases holds:

(1) 2, =0

(ii) PFor any coalition X that con-
tains k ard does not contain 4, there exists
a coalition S which contains { and which

does not contain k, such trat

2 v(X) - I,

v(S) - T, iex?i

s%i
We shall prove that when (i) does rot hold, (:i) does,
Let X Dbe some coalition that contains player k and aces not
contain player {. Let X be the image of X in 9. Let
RS " . X - contains the player k= and dces not con-
m, m, m 4
tain the player 4~ . Let H  be the image of H und let

K

H"§1 =H n Nm1' Since fzéam1) is in the Z-kernel and since

W7 € efr and z,~ > 07, there exisis a B-coalition s!
A m, 1

of r; that contains 4  and does not contain k  and for which
1




.- ' .-'w'.
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§ﬁ1(31) - Iies1?] 2 551(“7h1) - zief‘ﬁfi

Let S be the af-coalition containing every natural A -runver

j for whiech i~ 1is in 31. It is clear that S contains ¢
and does not contain k., Let S~ be the image of S in 4.
Note that S~ and S' are in general not identical, s' con-
tains only ‘ZB-numbers that are less than ﬁ1 + 17, S, on the
other hand, may contain greater Q-numbers, We set out to prove
that v(S) - L

2 v(iX) - L By Lemma 3.6,

) 1es?i iex?ie
|§(S1) - v(S7)| and |%(x~;1) - v(f)| are infinitesimal num-
bers, (The latter difference is infinitesimal because both co-
alitione have the same standard players.) By Lemma 3.7,
lzi€S1zi - (xiESzi) | and IZi€x~§q_- (tiexzi) | are likewise
infinitesimal. To prove that (v(x} - ziEuzi) £ (v(S) - 216321
it is sufficient to prove that for all & > 0 in A

(v(x) - Xiéxzi) - (v(S) - ziESzi) £ 8,

- e \~ -~ ~. 6 ")
BUU‘(V(X) - Ziexzi) - (v(S) - ziészi’ < v(X m1) + (T) _
cTeom 2 e (s w BT iz s ()T s 6T
i€, 1 7 : 7 1€51%1 T .
1

We have thus proven that (z; ©) is in the kernel. Therefore

the kerrnel is not emptly for any coalition structure.

Theorem 3.,9. Let K(G) be the kernel of an infinite game

G = ({1,2,...);v) which fulfills the relations {3.2), (3.3)
and (3.4). Let D ve an arbitrary coalition structure on G,
Let G, be the game ({1,2,...,n};vn), where v receives the

sams values as Vv on subsets of ({1,2,...,n}. Let K(G ) be
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1

the kernel of Gh' Let the space E* =E «x E1 X ... have

the Tychinoff topology. Let {Oi]i - 1.2 be a sequence of
- ?

sets, 0, € Ei. Let O, be a set in the space E° with the

i
following property: If x = (X;4X5,...) 18 & point in E
such that for any open set E containing x there exists a
natural number i and a vector (x{,xé,...,xi) in 0y such
that (xy,X5,...,%;,0,0,...) € E then x € O,. Under these
conditions, if for each n, there exists a vector

x(n) (x(n),...,x(n)) in 0  such that (x(n);ﬂ%) is in
K(G_ ), then there exists an x in O, such that (x;9) € K(G),

(n)

Proof: Since for each n there exists an x in 0n for
which (x(n)§5%) is in K(Gh), and since this fact is expressibie
in the fi~st order predicate calculus, it follows that for ary
natural§2?~number, m, there exlsts an x( @) in O& such that

“(m)# o ot . Cex G

(x #?é} is in K(Gﬁ). Lef m1 be an 1nf}nfte_29-number
Let x(m1) be such that x(q) € 0. and (x(%);D ) € K(G» ).

o4 my

Let x Dbe the infinite dimensional 04Lvector obtalned by setting

X, = (x . Then, as we have shown in the proof of Treorem

i
3.8, (x;jZD € K(G). We must prove that x € O_. Let x Dbe the

image in 42? of x. We will prove that for all e, Y- m |x 1 - xil +

rg

+

i>m1x 1<¢. Let Jj, bea natural,zf-numbef for whi?? )£i>JP(i) < %
P “{m ~

and for which £i>J| g € $¢. Then by Lemma 3.3 2a1:1>371 179 < (1)

¢ . Thus

and Ii>i~xi < (*) :
(3. 1\)) 21‘3\ |x 1 - x( 1' + ):1,“ 1 s ti‘J~ ‘X 1 - X( 1)3' +
+ Ei>ﬂ-x 1 + 21>3~2‘ 1) < 6 + (*) + (%)" e g

6 is infinitesimal. Hence
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8 + (#)” - ¢~ + () - T <",
Thus if € is a standard number, then there exists an 31 (in
our case i] = 51), and a vector i(11) in Oi such that
-~ ~N 1
~ (1,), 2 ~
zi‘i1 | x g - x'g? | + Zi>11x i < €. For any specific standard
e (¢e=4,%, ..., etc.) the phrase: "There exists an 11

and a vector ;(11) in Oi such that
1

5 ~ '(i ) 5 ~ 2 n

sy, X7 - 7] 4 By X7y < B
is expressible as a sentence in the first order predicate cal-
culus, This sentence is true in _53 for each specific standard
¢ > 0" . Then the sentence must be true in /¢$ for any specific
(14)

€ > 0, Thus for any € > O tnere exists an i, and an X

in O. such that
14

(3.11) By, 1% - (1)) By Xy < €
This means that for any open set E containing x there exists
an i, and a vector (x(%1), ceo x(i])) such that
(x{i1), L, x‘i}), 0, 0, ...) isin E and (x{11), .., x(i:)
Then by the conditions of the theorem, x € O,.
Clearly, Theorem 3.8 is a special case of Theorem 3.9.
Theorem 3.9 is useful for extending known theorems about the
kernel of finite games to infinite games, For example, it is
known (see [2]) that if & finite game has & non-empty core then
the kernel intersect3s the core. (The same is true if "core” 1is

replaced by "pseudo-core” (see [2])) It follows from Theorem 3.9

that the same result holds for gares wit» 2 countable number of

) €0, .

1




players, if the characteristic function, v, satisfies (3.2),

(3-3), and (3-4)0

Alternative Froof of Theorem 3.9. (Suggested by R, J. Aumann.)

For each 4, 4 = 1,2,..., let x(L) be an 4-dimensional
vector such that (x(L);éZ%) € K(GL) and x(&) € 0.
For all L‘z 1 and for all k, 1 $k s 4, x(é) < vL([1,...,L}) =

v({1,...,4}) £ v(N). Denote = v(N) and let

c =
(¢)

=]

= [0,e] x [0,¢] X ¢vs. Let X be the infinite dimensional

vector with x“é) = x(ﬁ) for the first 4 components and
(¢)

x'k = 0 for the remaining components. Under the Tychinoff
topology, I is a compact space. Then there exists a vector X

in I which is a 1limit point of the x'(L)'s. Since, by Theorem

1)

/
3.2, for all k and all 4, 4 2 k, x‘k

< Q(k), it follows that

(3,12) x, $ Q(k) for all k 2 1

K
Let C € D) and let ¢ > 0. We wish to show that

lv(C) - T ol < €
Let n, be such that

(3.13) Ban (k) € d¢

and such that for all n 2 Ny,
(3.14) v(C) - v(Cn) < %e,

Ccndition (3.4) assures the existeance of such an n,. Let m,
be greater than n, and be large enough so that

(mq)
E1‘kin1 |xb 1 - x| < e,

oy ?
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By Theorem 3.2, x(§1) < (k) for all k, 1 £k £ my. Thus,
by (3.12) and (3.13),

(3.15) 4 cicem, x(B1) _ x| o Do % © ¥

Since v(u ) - Lo X (g1) = 0, we may readily derive, using
(3.12), (3.13), (3.14), and (3.15), that |v(C) - 2 ekl < €
Due to the fact that € 1is an arbitrary positive quantity, it
follows that v(C) = Ty eo¥y '(xhﬁﬁ) is therefore an i.r.p.c.
Let i,j € C be two different players in C. Suppose

xj = 0. Let Ci be a coalition containing i and not j.

To prove that (x;&) € K(G) we must show the existence of a

/ \
Cj’ Cj € 331 (see (2.3)) such that e(Cj;x) 2 e(Ci;x). Denote

by Ci,n the ~oalition Ci restricted to the first n players,
?

for n=2i,j. Let {x(nv)} be a sub-sequence of n -

Vv=1,2,400
dimensional vectors such that ;o; all v, v = 1,2,...,
) gD ) € K(Gn ) and x(nv) € 0, S and such that
lim x'(n ) = X, whe;e x'(;v) = x(nv) if k s n, and x'(iv)
E;;erwise. Since x'(nv) - x, and since x;j > 0, there exists a
number v1 such that nv1 2 i,j, and such that for all v 2 v,,
x(Jv) > 0. For each v equal or greater than v, there exisis
a coalition C(nv), clny) ¢ {1,2,...,n,}, such that
e(C(gv);x(nv)) 2 e(Ci;nv;x
For any coalition E, let XE be the 0 - 1 characteristic
function of the set E, i.e., xE(n) =1 if n € E; xE(n) =0
otherwise, We shall now define a function on any two O - 1

characteristic functions.

=0

(n) s .
v’). This is because (xnv'J%v) € K(G
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(po%p) SE£ 8 | Ixg(n) - xpln)| (3O

One may easily verify that p is a metric; hence p induces
a topology on the "space" of 0 - 1 characteristic functions.
It is easily seen that the space X of all the O - 1
characteristic functions (regarded as infinite sequences) with
the topology based on this metric is a compact subspace of

J =[0,1] x [0,1] X ..., where the topology of J is the

Tychinoff topclogy. Let {C(?v)} be a sub-sequence of the

C(gv)v

to a2 single limiting O - 1 characteristic function. Denote

s such that {xc(mv)} converges under the p-topology
J

the coalition corresponding to the limiting O - 1 characteristic
function by Cj. It is clear that Cj contains j and does
not contain i. We wish to prove that e(Cj;x) 2 e(Ci;x). Let

€ be an arbitrary positive number. Let V4 be such that

: (n, )

(3.17) For all v 2v,, x 1 >0
) 1
(3.18) Zanv (k) < Tg¢
1 .
(3.19) For all v 2 v,, z1$k$nlek - x(ﬁv)| s T%e
1
1
(3.20) For all n 2 nv1’ v(Cj) - v(Cj;n) s 1ze
WheI‘e Cj;n = Cj n {1,2,...,1'1}
(3.21) For all n 2 nv1, v(Ci) - V(Ci;n) 3 T%e
Let C(?o) be a member of {C(?v)} such that

(m,) _ ) .

¢ 3° n cj;nv1 - CJ;nv1 and such that m_ 2 nv1. It is clear

ey oyt
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that such a C(?o) exists because any C(?) for which xy(m)

is sufficiently close to g (under the metric p) is bound

to contain all players contained in cj-n . Since
v
1
C(@o) ne., =C,, it is easy to deduce, using (3.18), that
J Jsn,, Jin,
1 1
.22 (m,)y - ve, < o
(3.22) v(C 10 ) - v( J;nv1) Tge
We know that e(C(?o);x(mo)) - e(Ci,m ;x(mo)) 2 0. Hence,
7o

(m,) (m,)
x‘vo’ - (V(C,., ) -C x'o’) 2 0,
kec(?o) k ism, kGCi;mo k

(3.23) v(C(?o)) .

By applying standard procedure to inequality (3.23) one easily
derives, by using inequalities (3.16) - (3.22), that

v(Cj) - zkEijk - (v(Ci) - Zkecixk) 2 -¢,

Since ¢ 1is an arbitrary positive cuantity, this means that

v(Cy) - Iyeo

J
Thus {(x;%D) € K(G). Since x is a limit point of a series of

X 2 v(Ci) - Zkecixk , or e(cj;x) 2 e(Ci;x).

vectors (x(n)}, such that for all n, x(n) € 0, then by the
conditions of the theorem it follows that x € Q.

The following theorem is an example which shows how non-
standard models may generate theorems concerning the kernel of
infinite games., .

Theorem 3,10, Let G = (N;v) be an infinite game satisfying

(3.2), (3.3) and (3.4). Let 9D e an arbitrary coalition struc-
ture, Then for any e > 0 there exists an n4 such that for eany

\
n, greater than n, and any ("2} for which (x(n2)£fh ) € K(Gn2)
2
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there exists an n3 < n, and an x(n3) such that

(x(n3);$?n3) € K(Gn3) and z1£i$n3 |x(?3) - x(?2)| + I x(?2) < e,

n3<i$n2
Proof: Let ¢ be an arbitrary positive quantity. Let & be the
image of G in . Let ﬁ1 be an infinite natural number. Let
ﬁz be an arbitrary infinite natural number such that 52 > ﬁ1.
Let i(ﬁZ) be such that (i(ﬁZ);ébﬁ ) € i(&ﬁ ). Let x be an
infinite dimensional 04Lvector such ihat Xy i (i(52)£~)‘v. Let
X be the image of x. We have seen in the proof of Theorem 3.9

(see (3.10)) that for any positive<24-number 5,

* . ~A “(ﬁ ) .A . ~‘ ~
We have also seen in the same proof (see (3.11)) thati there
exists a natural 04Lnumber, Ny, and a vector x(n3) such that
(n,), (n,)
(x*7350, ) € K(G ) and Iy Ix; - x'3] + 3, x, <8,
3 3 3 3
Thus

s ~ n ~ ~
(3.25) z1~$i$n~ Ix 3 - (X( 3)) il + Zi>n-;x 3 < §

Combining (3.24) and (3.25) and settins & = 4¢, we receive

(3.26) §1~$i$n§ !bén3))§i - i(EZ)il + %n§<isﬁ2%(ﬁ2)i <27 .8 =€,
From (3.26) it follows that the statement “there exists a k,

such that for any ﬁz,ﬁz > ﬁ1, and for any i(i2) such that )
(i(RZ);ébi ) € K(ng) there exists a ﬁ3,ﬁ3 < ﬁ1, and an %(kB);
such that 2(§(k3);g0& ) € K(G ) and

CRIR,
PREY'S " k A 3 - .a. aA &
1~515k3 Ix'%3 1 - X 274 + 2k3<isk2

~

p)
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is true in j@. The statement is expressible as a sentence in
the first order predicate calculus. Then it is true when re-
interpreted in 04. The statement, when re-interpreted in aqﬁ

states precisely what we wish to prove,

y
i
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